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ABSTRACT
Artificial light pollution is drastically changing the sensory environments of animals.
Even though many animals are now living in these changed environments, the
effect light pollution has on animal behavior is poorly understood. We investigated
the effect of light pollution on nocturnal vigilance in peahens (Pavo cristatus).
Captive peahens were exposed to either artificial lighting or natural lighting at
night. We employed a novel method to record their vigilance behavior by attaching
accelerometers to their heads and continuously monitoring their large head
movements. We found that light pollution significantly increases nocturnal vigilance
in peahens. Furthermore, the birds faced a trade-off between vigilance and sleep at
night: peahens that were more vigilant spent less time sleeping. Given the choice,
peahens preferred to roost away from high levels of artificial lighting but showed
no preference for roosting without artificial lighting or with low levels of artificial
lighting. Our study demonstrates that light pollution can have a substantial impact
on animal behavior that can potentially result in fitness consequences.

Subjects Animal Behavior, Ecology, Evolutionary Studies, Zoology
Keywords Light pollution, Antipredator behavior, Sensory ecology, Predator–prey, Pavo cristatus

INTRODUCTION
Humans are rapidly altering natural environments and this can lead to dramatic changes

in the sensory landscape. One change to the sensory landscape that has particularly

pronounced effects on wildlife is artificial light (Longcore & Rich, 2004; Tuomainen &

Candolin, 2011; Sol, Lapiedra & González-Lagos, 2013; Gaston, Duffy & Gaston, 2014).

Artificial light is created by many different sources, such as streetlights, lighted buildings

or towers, and security lights. Nearly 20% of land on earth is considered polluted by light

(Cinzano, Falchi & Elvidge, 2001) and this pollution is increasing every year (Hölker et al.,

2010). Light pollution has immediate fitness impacts on animals (Rich & Longcore, 2006).

Animals that fail to adjust their behavior in response to artificial light can have reduced

survival and reproductive success. In extreme cases, species may even become at risk of

extinction (Stockwell, 2003).

Animals exhibit altered behavior in response to light pollution. Increased nocturnal

illumination affects movement patterns. Rather than moving toward the sea, hatchling
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turtles are attracted to shoreline lights and fail to begin their oceanic migrations (Tuxbury

& Salmon, 2005). The movement patterns of migrating birds are also disrupted. They are

attracted to artificial lights on overcast nights and remain near those lights rather than

continuing their migration (Avery, Springer & Cassel, 1976). Artificial light can impact

courtship behavior. Songbirds initiate singing earlier in the morning and can even obtain

more extra-pair mates when exposed to environments with artificial lighting (Miller, 2006;

Kempenaers et al., 2010). In addition, light pollution can alter predator–prey interactions.

Harbor seals are more successful at capturing salmonids in the presence of artificial light

(Yurk & Trites, 2000). Birds and bats can likewise prey on moths at high rates when

the moths congregate at artificial light sources (reviewed in Frank, 1988). Despite our

growing knowledge on the effects of artificial light on animal behavior (Rich & Longcore,

2006; Gaston, Duffy & Gaston, 2014), we still know little about the mechanisms by which

animals adjust their behavior in response to artificial nocturnal illumination (Tuomainen

& Candolin, 2011; Kurvers & Holker, 2015).

In contrast, we do know that variation in natural lighting at night influences vigilance

(Beauchamp, 2007). Depending on moon phase, light at night can vary between about

0.5 lux for a new moon and 2 lux for a full moon (Weaver, 2011). This variation alters

vigilance levels differently depending on the species (Beauchamp, 2015). Greater flamingos

and tammar wallabies increase their vigilance behavior at night when light levels are

low (Beauchamp & McNeil, 2003; Biebouw & Blumstein, 2003) but gerbils decrease their

vigilance behavior in response to low light levels (Kotler et al., 2010). Because nocturnal

light levels can vary based on sleeping sites (Gorenzel & Salmon, 1995; Longcore & Rich,

2007), animals can choose to sleep under preferred lighting conditions (Nersesian, Banks

& McArthur, 2012). Their choice of sleeping sites and vigilance behavior will in turn affect

their sleep (Gauthier-Clerc, Tamisier & Cézilly, 2000). However, we do not know how prey

species alter their nocturnal vigilance behavior when exposed to artificial lighting.

We therefore investigated the effects of light pollution on nocturnal vigilance behavior

in peafowl. Peafowl are an appropriate species in which to examine this topic because

they must increasingly live in well-lit urban environments due to habitat loss (Ramesh &

McGowan, 2009). They are a lekking species that are native to the Indian subcontinent

but have also been introduced to North America and other regions (Kannan & James,

1998). At night, they roost on tall structures (such as trees and poles; De Silva, Santiapillai

& Dissanayake, 1996; Parasharya, 1999) and periodically open their eyes to scan their

environment (Yorzinski & Platt, 2012). Many nocturnal predators, such as tigers, jackals,

and raccoons, could potentially prey on them (Harihar et al., 2007; De Silva, Santiapillai &

Dissanayake, 1996; Kannan & James, 1998).

We developed a novel method for monitoring vigilance rates by using accelerometers.

Accelerometers have become an increasingly popular tool for studying animal behavior

(e.g., Sakamoto et al., 2009; Grünewälder et al., 2012; Nathan et al., 2012). They are

often attached to an animal’s back and can be used to classify general activity patterns

(e.g., flying, resting, walking; Sakamoto et al., 2009). Accelerometers that are attached

to animals’ heads can record head movements (Kokubun et al., 2011). Since high head
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movement rates are related to heightened antipredator vigilance (e.g., Jones, Krebs &

Whittingham, 2007), we can use head movement rates to approximate vigilance levels.

METHODS
We examined the effect of artificial light pollution on vigilance levels in a captive

population of adult peahens. The artificial light experiment was conducted between

October 2013 and July 2014 at the Purdue Wildlife Area in West Lafayette, IN, USA

(40.450327◦N, −87.052574◦E). The peafowl were housed in a large outdoor aviary (24.4

× 18.3 × 1.8 m) in an open area and were given food and water ad libitum. The study

was approved by Duke University Animal Care and Use Committee (A205) and Purdue

University Animal Care and Use Committee (1305000862 & 1504001232).

Artificial light experimental procedure
We conducted thirteen light trials and thirteen control trials to test the effect of artificial

light on vigilance behavior. A given bird was tested in either a light trial or a control trial

(the order was randomized across birds; 26 different birds were therefore tested overall).

For each trial, a female was transported to an experimental cage (9 m × 4.5 m). The

experimental cage was a section within the main aviary that was surrounded by black

plastic. The black plastic went from the ground to the roof on the two sides of the cage

that faced the main aviary (this ensured that the trial bird was unable to see the birds in

the flock) and from the ground to 1.15 m tall on the other two sides. It had a wooden

sawhorse roost (0.85 m tall and 1.3 m long) that was positioned 4.5 m from an LED flood

light (Philips 17-Watt Outdoor and Security Bright White; model: PAR38; flicker rate:

38 kHz; spectral radiance has two peaks: 4 mW/nm at 450 nm and 8.4 mW/nm at 600 nm

(see Philips technical application guides for complete graph of spectral radiance)), which

was suspended from the roof (1.8 m from the ground). Before the female was released

into the experimental cage, a velcro strip (3.5 mm × 1.8 mm) with elastic straps was glued

(Artiglio Super 620) to the feathers atop her head. After at least 1 h, a 3-axis accelerometer

(TechnoSmart, Rome, Italy; 3 mm × 1.1 mm; 0.5 g; sample resolution: 19.6 m s−2; sample

rate: 50 Hz), which was protected in shrink wrap and electrical tape, was attached to the

bird’s head using velcro and secured by the strap (Fig. 1). The bird was then released into

the experimental cage.

Each trial lasted seven nights. During a light trial, the light was off during nights 1, 6,

and 7 and was on during nights 2–5 (this experimental design is similar to the one used

in Stone, Jones & Harris, 2009). When the light was initially turned on during the daytime

of the second trial day, it remained on (even during daylight) until the daytime after the

fifth trial night. At night when the light was turned on, the light intensity was 1,260 lux

below the light (light meter on ground facing up at light) and 0.75 lux at the roost (light

meter facing toward the light); when the light was turned off, the light intensity was 0.04

lux below the light and 0.01 lux at the roost (Extech EasyView 31 light meter; resolution:

0.01 lux for readings below 20 lux and 1 lux for readings above 999; measurements taken

during a night with clear skies and 69.5% moon illumination). During a control trial,

the light was never turned on. An experimenter replaced the accelerometer each day of a
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Figure 1 Peahen on the roost wearing an accelerometer.

light and control trial (the accelerometer battery did not last more than 48 h) and did so

at least 1 h after sunrise and 1 h before sunset. On the last day of each trial, the bird was

weighed (ZIEIS Veterinary Pet Scale; 5 g accuracy) and returned to the main aviary. The

length of the birds’ tarsus + metatarsus was measured at the end of the entire experiment

(Neiko digital caliper; Neiko Tools, Wenzhou, Zhejiang, China; model number: 01409

A; ±0.03 mm accuracy). Three infrared camcorders (Night Owl CAM-600) connected

to a DVR (Night Owl Apollo-45 or LTE-44500) continuously recorded the area within

the experimental cage and immediately outside (2.5 m from the cage perimeter) the

experimental cage.
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We determined the number of head movements the birds made (see algorithm below)

during each night of the trials (starting 1 h after sunset and ending 1 h before sunrise;

“nighttime period”). Using the video recordings, we also calculated the percentage of time

that birds spent on the roost during the nighttime periods, the percentage of time that

potential predators and non-predators were visible along the perimeter of the experimental

cage, when the birds ascended to the roost for the night, and when the birds descended

from the roost in the morning. The time at which a bird ascended to the roost for the night

was determined by moving backwards in the videos from the nighttime period (1 h after

sunset) and finding the time when the bird jumped on the roost. If the bird was not already

on the roost 1 h after sunset, then we moved forward in the videos until the bird jumped on

the roost. The time at which a bird descended from the roost for the night was determined

in a similar manner except that we moved forward in the videos from the nighttime period

(1 h before sunrise) until finding the time when the bird jumped off the roost. If the bird

was already off the roost 1 h before sunrise, we moved backward in the videos until the bird

jumped off the roost. We excluded times when the experimenters interfered with when the

bird ascended to the roost or descended from the roost (e.g., if the bird descended from the

roost because the experimenter entered the enclosure).

Head movement extraction
In order to classify head movements using an accelerometer, we needed to examine the

accelerometer data with respect to the birds’ behavior. Using similar steps as described

above, we performed 10 trials in which we video recorded the birds’ behavior (Sony SR47)

while they were wearing an accelerometer at night (no artificial light was turned on). These

trials were performed from April through August 2013 in Durham, NC, USA (36.01◦N,

79.02◦W) using the same captive population as above (the birds were relocated from North

Carolina to Indiana in August 2013).

We synchronized the accelerometer data with the behavioral videos (Logger Pro, Vernier

Software and Technology, LLC; Fig. 2; Video S1). We labeled the accelerometer data to

indicate when a head movement began and ended. We labeled small head movements (less

than 5 deg) and large head movements (greater than 5 deg). The small head movements

primarily occurred when the bird blinked or moved its head slightly while sleeping; it

is unlikely that these small head movements were related to vigilance behavior and it

was necessary to exclude them from the analysis. In order to quantitatively distinguish

between small and large head movements, we determined the absolute value of the range

of the acceleration in the x, y, and z and then summed these three ranges (‘acceleration

range’) for each head movement. We found that 70% of the small head movements had an

acceleration range below 4.61 m s−2 and 70% of large head movements had an acceleration

range above 5.30 m s−2. We therefore reclassified the coded data such that only head

movements with an acceleration range greater than 4.90 m s−2 were classified as head

movements (Video S2).

We created a custom algorithm (Matlab R2014a; The Mathworks Inc., Natick, MA,

USA) to extract head movements from the accelerometer data and used the labeled
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Figure 2 Sample of the accelerometer data in swing (X), sway (Y), and yaw (Z). Arrows indicate the
four times when the peahen makes a head movement. This graph is also displayed in Video S1.

accelerometer data to examine its accuracy. This algorithm is similar to that used in

another study that extracted head movements from accelerometer data (Kokubun et

al., 2011) because it also relies on a threshold system. Our algorithm performed two

steps to extract head movements. First, it identified times at which the change in sway

acceleration (delta y) exceeded 1.37 m s−2. This threshold value was determined based

on one randomly-selected bird from the labeled dataset. We adjusted this threshold value

until the number of predicted head movements most closely matched the number of actual

head movements. Second, the algorithm filtered these times to ensure that the same head

movement was not counted as multiple head movements. Based on the labeled data, head

movements were at least 0.5 s apart. Therefore, this filter removed a head movement if it

was within 0.5 s of another head movement.

Accelerometer effect
We conducted eight trials (with eight different peahens) to test the effect of the

accelerometer on the birds’ vigilance behavior. These trials were performed in February

and March 2013 with the population in Durham, NC, USA. On one night, the bird

had an accelerometer attached to its head; on the other night, the bird did not have an

accelerometer attached to its head (the order of accelerometer attachment was randomized

across trials). The artificial light was not turned on. Two infrared camcorders (Night

Owl CAM-600) connected to a DVR (Night Owl Apollo-45 or LTE-44500) continuously

recorded the bird. We randomly selected three 10-min periods from both nights of each

trial (the times were matched in each night) and manually scored the number of head

movements in each period.
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Sleep effect
We conducted eight trials (with eight different peahens) to examine the relationship

between head movement rate and sleep behavior. These trials were performed in March

and April 2015 with the population in West Lafayette, Indiana, USA in the experimental

cage from the artificial light experiment. Each bird had an accelerometer attached to her

head and was tested during one night. The artificial light was not turned on. Two infrared

camcorders (Bolide Technology Group IR Bullet Camera) connected to a DVR (Swann

DVR4-2600) continuously recorded each bird such that the left and right eye of the bird

were visible. We randomly choose two 30-min periods (occurring after the bird ascended

to the roost for the night and before the bird descended from the roost in the morning)

from each trial. For the left and right eye separately, we scored the times at which the

eyes were closed (excluding blinks; using Inqscribe software). We scored the left and right

eye separately because peahens (Yorzinski & Platt, 2012), like other birds (Rattenborg,

Amlaner & Lima, 2000), asymmetrically close their eyes during sleep. We then determined

the percentage of time that both eyes were simultaneously closed (‘sleep behavior’); the

percentage of time that both eyes were simultaneously closed was strongly correlated with

the percentage of time that the right eye was closed (F1,14 = 2,168, p < 0.0001, R2
= 0.99)

and the left eye was closed (F1,14 = 2,683, p < 0.0001, R2
= 0.99).

Roost selection
We conducted eight trials (with eight different peahens) to examine whether peahens

prefer to roost under artificial night lighting (‘direct light’) or away from the lighting (‘low

light’). These trials were performed in April and May 2015 with the population in West

Lafayette, Indiana, USA in an experimental cage (4.5 m × 9.0 m) that was 75 m from the

large aviary. There were two wooden sawhorse roosts (0.85 m tall and 1.3 m long) that were

positioned on opposite sides of the cage (1.1 m from the cage sides and 6.8 m from each

other). An LED flood light (Philips 17-Watt Outdoor and Security Bright White; model:

PAR38) was suspended from the roof directly above each roost (1.8 m from the ground).

One of the lights was turned on during each trial (randomized across trials). At night when

the light was turned on, the light intensity was 3.0 kLux directly below the light (light meter

on roost facing up at light) and 0.22 lux at the roost on the opposite side of the cage (light

meter facing toward the light; Extech EasyView 31 light meter; measurements taken during

a night with clear skies and 78.0% moon illumination). Two infrared camcorders (Night

Owl CAM-600) connected to a DVR (Swann DVR4-2600) continuously recorded each

roost. Based on the video recordings, we determined whether the bird spent the night on

the roost that was under ‘direct light’ or ‘low light.’

We performed another roost choice experiment to assess whether peahens prefer to

roost without any artificial light (‘no light’) or to roost with low levels of artificial light

(‘low light’). We tested 16 different peahens in individual trials that each lasted two nights.

The trials lasted two nights so that we could determine whether peahens were consistent

in their roosting preferences. This experiment was conducted from May to July 2015 in the

same cage that was used for the roost choice experiment above. Black plastic divided the
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cage in half (lengthwise) but a small opening (0.75 m) did not have black plastic so that

the bird could move between the two sides of the cage. The black plastic ensured that light

from one side of the cage did not enter into the other side. There was a wooden sawhorse

roost (0.85 m tall and 1.3 m long) on both sides of the cage (2 m from the cage side). An

LED flood light (Philips 17-Watt Outdoor and Security Bright White; model: PAR38) was

suspended from the roof and positioned 4.5 m from each roost (1.8 m from the ground).

One of the lights was turned on during each trial (randomized across trials). At night when

the light was turned on, the light intensity was 1,260 lux below the light (light meter on

ground facing up at light), 0.75 lux at the roost that was in the same side of the cage (light

meter facing toward the light), and 0.01 lux at the roost that was in the opposite side of

the cage; when the light was turned off, the light intensity was 0.01 lux below the light

and 0.01 lux at each roost (Extech EasyView 31 light meter; measurements taken during a

night with clear skies and 26.4% moon illumination). Two infrared camcorders (Night Owl

CAM-600) connected to a DVR (Swann DVR4-2600) continuously recorded each roost.

Based on the video recordings, we determined whether the bird spent the night on the

roost that was under ‘no light’ or ‘low light.’

Data analysis
We tested whether nocturnal vigilance (measured using the number of head movements)

varied with respect to lighting. We ran a repeated-measures mixed linear model (PROC

Mixed with a variance components (VC) covariance structure) with head movement

rate (natural log transformed to meet underlying assumptions of normality) as the

dependent variable. The head movement rate was calculated by summing the number

of head movements that occurred in the nighttime period and then dividing that sum by

the total time in that nighttime period for each night of each trial.

The independent variables were the trial type (light trial or control trial), trial night (the

specific night of the trial: 1–7), and their interaction as well as environmental variables

(wind speed, precipitation, temperature, moon illumination, predator presence, and

non-predator presence) and morphological measurements of the bird (mass and tarsus

+ metatarsus). The climate variables were obtained from a nearby weather station (http:

//iclimate.org; ACRE- West Lafayette) and moon illumination was the fraction of the

moon’s surface that was illuminated from the sun’s rays (http://www.timeanddate.com;

Lafayette, IN). The wind speed (natural log transformed to meet underlying assumptions

of normality) and temperature were averaged across the nighttime period. Since there was

no precipitation during 79% of trial nights, precipitation was categorized as being present

or not. Predator and non-predator presence was whether predators or non-predators,

respectively, were visible along the outside of the perimeter or not during the nighttime

period (predators and non-predators were visible in only 34.5% of nights). We performed

a priori contrasts to test whether head movement rates during each of the seven trial nights

differed between the light trials and control trials as well as whether head movement rates

differed between night 2 (first night of light) and 5 (last night of light) of the light trials.

Yorzinski et al. (2015), PeerJ, DOI 10.7717/peerj.1174 8/19

https://peerj.com
http://iclimate.org
http://iclimate.org
http://iclimate.org
http://iclimate.org
http://iclimate.org
http://iclimate.org
http://iclimate.org
http://iclimate.org
http://iclimate.org
http://iclimate.org
http://iclimate.org
http://iclimate.org
http://iclimate.org
http://iclimate.org
http://iclimate.org
http://iclimate.org
http://iclimate.org
http://iclimate.org
http://iclimate.org
http://www.timeanddate.com
http://www.timeanddate.com
http://www.timeanddate.com
http://www.timeanddate.com
http://www.timeanddate.com
http://www.timeanddate.com
http://www.timeanddate.com
http://www.timeanddate.com
http://www.timeanddate.com
http://www.timeanddate.com
http://www.timeanddate.com
http://www.timeanddate.com
http://www.timeanddate.com
http://www.timeanddate.com
http://www.timeanddate.com
http://www.timeanddate.com
http://www.timeanddate.com
http://www.timeanddate.com
http://www.timeanddate.com
http://www.timeanddate.com
http://www.timeanddate.com
http://www.timeanddate.com
http://www.timeanddate.com
http://www.timeanddate.com
http://www.timeanddate.com
http://www.timeanddate.com
http://dx.doi.org/10.7717/peerj.1174


We ran two repeated-measures mixed linear models to determine the variables

influencing the time (relative to sunset and sunrise) at which the birds ascended to the

roost and descended from the roost for the night. The independent variables were the trial

type (light trial or control trial), trial night (the specific night of the trial: 1–7), and their

interaction as well as environmental variables during the nighttime period (wind speed,

precipitation, temperature, and moon illumination) and morphological measurements

of the bird (mass and tarsus + metatarsus). We also ran repeated-measures mixed linear

models to evaluate whether head movement rate (natural log transformed) (1) differed

depending on whether the bird was wearing an accelerometer or not and (2) was related

to sleep behavior. We performed binomial tests (Proc Freq) to assess peahens’ roosting

preferences (the peahens never switched to a different roost during a given night). All

analyses were performed in SAS (9.3; Cary, NC, USA) or Minitab (15.1; Minitab Inc., State

College, PA, USA). The data supporting this article are available in Harvard Dataverse: 10.

7910/DVN/J3RF1P.

RESULTS
The extraction algorithm accurately predicted the head movements of peahens from

the accelerometer data (Fig. 2). Across all the birds, there were 1,699 head movements

observed in the labeled dataset and the algorithm predicted that there were 1,678 head

movements (overall accuracy: 98.8% correct). Averaging within birds, the overall accuracy

was 96.1% (SE: 1.5%). Of the 1,678 head movements that the algorithm predicted, 1,536

of those head movements were true head movements (the predicted head movement fell

within the time period of an observed head movement; “true accuracy”: 90.4% correct).

Averaging within birds, the true accuracy was 87.4% (SE: 3.4%). The accuracies were

similar even when excluding the trial from the bird that was used to create the threshold

value (see “Materials and Methods”; overall accuracy: 98.8%; true accuracy: 90.6%). The

accelerometer did not have an effect on the number of head movements peahens made

(F1,7 = 0.15, p = 0.71; Fig. 3). Peahens that had lower head movement rates spent more

time sleeping (F1,7 = 31.05, p = 0.0008; Fig. 4).

Head movement rate was related to the trial type (light trial or control trial; F1,22 =

30.45, p < 0.0001), trial night (the specific night of the trial; F6,102 = 7.21, p < 0.0001),

and their interaction (F6,102 = 4.67, p=0.0003). Birds that weighed less had higher head

movement rates than birds that weighed more (F1,22 = 13.11, p = 0.0015) but the tarsus

+ metatarsus length was unrelated to head movement rates (F1,22 = 0.01, p = 0.92).

The climate variables and moon illumination had no impact on head movement rate

(wind: F1,102 = 2.97, p = 0.088; precipitation: F1,19 = 1.61, p = 0.22, temperature:

F1,102 = 1.59, p = 0.21, moon illumination: F1,102 = 0.40, p = 0.53). Importantly, the

head movement rates were unrelated to predator and non-predator presence (predator

presence: F1,13 = 1.15, p = 0.30, non-predator presence: F1,15 = 0.59, p = 0.46). This

is not unexpected given that predator and non-predator presence was rare and these

predators and non-predators were outside the cage (and therefore largely visually blocked

by the black plastic which surrounded the cage) and not directly under the artificial light.
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Figure 3 Head movement rate was similar regardless of whether the peahen was wearing an ac-
celerometer or not (means ± SE).

Figure 4 Peahens that exhibited lower head movement rates spent more time sleeping. Because each
peahen was sampled during two periods (see “Methods”), there are two circles per bird.

However, head movements in peahens are related to antipredator behavior. By manually

analyzing head movements from a previous experiment in which peahens were exposed

to a taxidermy raccoon at night (without any artificial light pollution; Yorzinski & Platt,

2012), peahens made more head movements during a 1-min period while the predator
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Figure 5 Artificial light pollution increases head movement rates (means ± SE). Head movement rates
were similar on nights when the artificial light was off in both light and control trials (nights 1, 6, and 7).
Head movement rates were significantly higher during nights when the artificial light was on during the
light trials and off during the control trials (nights 2–5). Asterisks indicate significant differences in head
movement rates between the light and control trials.

was moving toward them and then stopped in front of them (mean ± SE: 6.21 ± 4.14)

compared to a 1-min period immediately before the predator was exposed (mean ± SE:

0.80 ± 0.91; paired t-test: n = 7; t = 3.77; p = 0.009; we averaged the head movements

from the two peahens that were tested in each trial).

Artificial light pollution had a strong effect on head movement rates (Fig. 5). The head

movement rate was similar on the first night of both trial types when no light was on

(t1,102 = 0.39, p = 0.69). On the second, third, fourth, and fifth nights of the trials, when

the light was on during the light trials and off during the control trials, the head movement

rate was higher in the light trials compared to the control trials (second night: t1,102 = 5.16,

p < 0.0001; third night: t1,102 = 4.28, p = 0.0002; fourth night: t1,102 = 3.52, p = 0.0006;

fifth night: t1,102 = 2.13, p = 0.036). On the sixth and seventh nights, when the light

was off in both trial types, there was no difference in head movement rate (sixth night:

t1,102 = 0.25, p = 0.80; seventh night: t1,102 = 0.23, p = 0.82). During light trials, the head

movement rate was higher on the first night that the light was on (night 2) compared

to the last night that the light was on (night 5; t1,102 = 2.51, p = 0.014). The results

were qualitatively the same if the head movement rate was not log transformed except

there was no significant difference between head movement rates during night five in

both the light and control trials (t1,102 = 1.68, p = 0.096). If the p-values are corrected

for multiple comparisons using the Holm–Bonferroni method, there is no significant
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difference between head movement rates during night five in both the light and control

trials nor between the first night that the light was on compared to the last night that the

light was on in the light trials.

Peahens remained on the roost for most (97.2%) of the total nighttime period (the

nighttime periods from all the trial nights across both treatments). They roosted on the

ground for the entire nighttime period in only 2.3% of trial nights. During trials when

they remained off the roost for only a portion of the nighttime period (11 nights), they

primarily did so during light trials on nights when the light was on (10 nights). Potential

predators (cats, raccoons, opossums, and owls) spent little time (0.25% of the total

nighttime period) directly outside the cage. The percentage of time that predators were

present outside the cage was unaffected by whether the light was on or off (Kruskal-Wallis:

H = 0.06; p = 0.81). Non-predators (frogs, mice, rabbits, and skunks) spent slightly

more time outside the cage (2.36% of the total nighttime period) than predators and

they spent more time outside the cage when the light was on compared to when it was

off (Kruskal–Wallis: H = 7.52; p = 0.0061). Peahens ascended to the roost later in the

night when the temperature was higher (F1,105 = 4.45, p = 0.037); the other independent

variables, including the trial type, did not affect when the birds ascended to the roost

(p > 0.07). Peahens descended from the roost later in the morning when the moon

illumination was higher (F1,109 = 10.12, p = 0.0019); the other independent variables,

including the trial type, did not affect when the birds descended from the roost (p > 0.08).

Peahens exhibited a strong preference for roosting away from direct artificial lighting

(p = 0.0078, two-tailed binomial test). In fact, all of the peahens (n = 8) chose to roost

in ‘low light’ compared to ‘direct light.’ In contrast, peahens (n = 16) did not show a

preference for roosting in ‘no light’ versus ‘low light’ conditions (night one: p = 0.32,

two-tailed binomial test; night two: p = 0.62, two-tailed binomial test). Most of the birds

(69%) roosted in the same location during both nights of their trials. However, one bird

roosted in the dark during the first night and in the low light for the second night while

four birds did the opposite.

DISCUSSION
Artificial light pollution increases nocturnal vigilance in peahens. Peahens exhibited

a higher rate of head movements (a proxy of vigilance; Jones, Krebs & Whittingham,

2007) on nights when artificial light was present compared to nights when artificial

light was absent. These higher head movement rates were not caused by actual threats

in the environment—predator presence was rare and unrelated to the number of head

movements that peahens made. Furthermore, peahens that exhibited higher head

movement rates spent less time sleeping.

Even though animals are increasingly confronted with artificial light pollution, we are

only beginning to understand the effects it has on their behavior. Artificial night lighting

affects general activity patterns. This is unsurprising given that light is an important factor

in mediating circadian rhythms (Fonken & Nelson, 2014). Some birds extend the times

during which they forage when exposed to artificial light. Mockingbirds feed their nestlings
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late in the evening when under high artificial light levels (Stracey, Wynn & Robinson, 2014).

European blackbirds continue foraging longer into the evening (Russ, Rüger & Klenke,

2015) and begin their mornings earlier (Dominoni et al., 2014) when exposed to artificial

night lighting. Artificial lighting can therefore alter basic activity patterns but the fitness

consequences of these changes are unknown. Artificial lighting can even affect physiologi-

cal processes. Siberian hamsters have reduced immune function when exposed to artificial

lighting (Bedrosian et al., 2011) and the reproductive systems of birds change under artifi-

cial lighting (Dominoni, Quetting & Partecke, 2013). During the rare occasions when pea-

hens descended from the roost during the night in this study, they primarily did so during

nights when the artificial light was on and they would begin foraging on the ground. Mice

also alter their feeding habits when exposed to increased nocturnal lighting and this can

lead to excess weight gain (Fonken et al., 2010). However, unlike some species (Dominoni

et al., 2014), artificial lighting did not influence the timing of when peahens ascended to

the roost or descended from the roost in the evening or morning, respectively. Because the

peahens had unlimited access to food in this captive study, it may have been unnecessary

for them to take advantage of increased lighting by maximizing their foraging time.

Artificial light pollution affects predator–prey relationships. Predators, including

harbor seals and bats, are more successful at capturing their prey when artificial light

pollution is present than absent (Rydell, 1992; Yurk & Trites, 2000; Minnaar et al., 2014).

Avian and aquatic predators may also be more successful at capturing prey under artificial

night lighting (reviewed in Frank, 1988; Becker et al., 2013). In response to high predation

rates under artificial light, prey can alter their anti-predator strategies. Frogs decrease their

calling rates when exposed to artificial nocturnal light and this may reduce their predation

risk (Baker & Richardson, 2006). This study demonstrates that peahens increase their

vigilance rate in response to artificial night lighting.

Vigilance is a key component to understanding the evolution of antipredator behavior

(Caro, 2005). Individuals that are more vigilant are faster at detecting predators (Lima &

Bednekoff, 1999). Antipredator vigilance occurs when animals scan their environment for

potential predators (Bednekoff & Lima, 2002). Head movements are one way in which

animals can remain vigilant because it allows them to rapidly shift their visual field

(reviewed in Jones, Krebs & Whittingham, 2007). Such vigilance can be useful to detect both

predators and monitor conspecifics (Lung & Childress, 2007). Individuals can also remain

vigilant by moving their eyes (Yorzinski & Platt, 2014) and “peeking” (periodically opening

their eyes while sleeping; Lendrem, 1984). Individuals in large groups are often less vigilant

than those in small groups (Lima, 1995). Vigilance is also affected by where animals choose

to sleep. Animals can select sleeping sites with varying levels of vegetation and accessibility

to reduce predation risk (Lazarus & Symonds, 1992). Some species may prefer roosting

under artificial lighting because they can detect predators more easily (Gorenzel & Salmon,

1995). In contrast, other prey species may be more vulnerable to predation by sleeping

under artificial lighting (Longcore & Rich, 2007). In this study, peahens preferred to roost

further away from high levels of artificial lighting (although they showed no preference

between roosting under low level artificial lighting and no artificial lighting). However,
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when the peahens’ only option was to sleep near artificial lighting, they exhibited higher

vigilance rates than they did when exposed to natural night lighting. Therefore, they may

be compensating for increased predation risk by increasing their vigilance levels. Peahens

may exhibit low vigilance rates under natural conditions at night (i.e., only moonlight)

because they see poorly in low-light environments (Hart, 2002; Yorzinski & Platt, 2012).

It would be informative to present predators to the birds at night to assess their predator

detection abilities. Given their increased vigilance levels during nights with artificial light

pollution, we would expect them to detect predators more quickly than during nights

without artificial light pollution.

We also found that vigilance behavior and sleep are inversely related. Peahens that

were more vigilant spent less time sleeping (see also Gauthier-Clerc, Tamisier & Cézilly,

2000). We defined sleep as when both eyes of the birds were closed. Measuring their sleep

using an electroencephalogram would provide additional information about their sleep

stages (Campbell & Tobler, 1984). The trade-off between vigilance behavior and sleep may

explain why peahens showed decreased vigilance behavior after continued exposure to

artificial lighting (their vigilance rate was higher on the first night that the artificial light

was present compared to the last night that the light was present). Peahens that maintain

high nocturnal vigilance rates may suffer cognitive impairments (Thomas et al., 2000) or

other costs that outweigh the benefits of being more alert at night.

It can be difficult to obtain accurate measurements of vigilance because animals are

frequently engaging in vigilance behavior throughout the day and night. Previous studies

generally measure vigilance by manually recording this behavior during a relatively short

time-period (e.g., Jones, Krebs & Whittingham, 2007). We developed a novel technique to

automatically quantify vigilance by using an accelerometer. An accelerometer positioned

on the head of an animal can track all of the animal’s head movements. This technique is

especially powerful for recording nocturnal head movements in diurnal animals because

the animals are primarily still at night except for head movements (and the accelerometer

will therefore not mistake other behaviors with head movements). It can be a useful tool for

future comparative studies to examine the factors, both natural and anthropogenic, that

influence vigilance behavior.
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